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Abstract
Asthmatic patients are currently classified as either severe or non-severe based primarily on their
response to glucocorticoids. However, because this classification is based on a post-hoc
assessment of treatment response, it does not inform the rational staging of disease or therapy.
Recent studies in other diseases suggest that a classification which includes molecular information
could lead to more accurate diagnoses and prediction of treatment response. We therefore
measured cytokine values in bronchoalveolar lavage (BAL) samples of the lower respiratory tract
obtained from 83 asthma patients, and used bipartite network visualizations with associated
quantitative measures to conduct an exploratory analysis of the co-occurrence of cytokines across
patients. The analysis helped to identify three clusters of patients which had a complex but
understandable interaction with three clusters of cytokines, leading to insights for a state-based
classification of asthma patients. Furthermore, while the patient clusters were significantly
different based on key pulmonary functions, they appeared to have no significant relationship to
the current classification of asthma patients. These results suggest the need to define a molecular-
based classification of asthma patients, which could improve the diagnosis and treatment of this
disease.
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1. Introduction
Asthma is a chronic inflammatory disease of the airways which affects about 300 million
individuals worldwide, and results in an estimated 250,000 dying prematurely [1]. The
disease is characterized by recurrent airflow obstruction and hyperactivity to nonspecific
stimuli [2], which is treated mainly with inhaled glucocorticoid therapy. Although many
asthma patients respond well to such therapy, a subset of patients (referred to as “severe”) is
unresponsive, and has disproportionately high rates of morbidity and mortality. As a result,
medical costs for treating this subset accounts for more than 40% of the total cost of asthma
treatment [3].

Unfortunately, relatively little is known about which patients will have poor outcomes to
glucocorticoid therapy. For example, although asthma patients are currently classified as
severe or non-severe based on their therapeutic response to glucocorticoids [4], this course-
grained clinical classification does not explain the varying degrees of lung function
compromise, airway hyper-reactivity, gastro-esophageal reflux, and chronic obstructive
pulmonary disease (COPD) in patients currently diagnosed with severe asthma. Physicians
therefore often use a trial and error process to balance escalating medications with
associated side effects in an effort to treat severe asthma patients.

Recent developments in molecular biology and powerful analytical methods such as network
analysis provide new opportunities to shift our understanding of diseases from a
morphological (based on clinical and histological findings) to a molecular basis [5–6]. For
example, gene expression analyses have been shown to improve prediction of treatment
response in several diseases such as breast cancer [7–9] and leukemia [10]. Because asthma
is a chronic disease associated with innate and T helper lymphocyte-biased inflammation
[2], we hypothesized that profiles of airway fluid cytokines that represent major effectors
molecules of leukocytic inflammation could provide insights for developing a new
molecular-based classification of asthma. Such a classification, based on effector proteins
found in lung fluids, could enable more accurate prediction of disease progression and
therapeutic response.

We begin by describing our motivation for the current analysis through a brief summary of
previous approaches used to analyze asthma patients. Next, we describe how we assembled
a dataset of patients and their cytokine profiles, why and how we represented it using
networks, and how we analyzed the networks using visualizations and appropriate
quantitative measures. We then discuss how the bipartite network analysis revealed complex
co-occurrence patterns of cytokine across patients, and how those patterns relate to key
attributes of pulmonary function, and known molecular pathways. We conclude by
discussing the need to define a molecular-based classification of chronic asthma patients,
and the utility of bipartite network analyses to understand complex relationships.

2. Related Work
As stated in the introduction, there is a growing consensus among asthma researchers that
the current classification of asthma patients has not been sufficiently predictive to guide
treatment. For example, a 2009 World Health Organization panel consisting of 33 asthma
researchers from 14 countries concluded that “the use of severity as a single outcome
measure has limited value in predicting which treatment will be required and the response
to that treatment”. Moreover, they noted that “severity is not a stable feature of asthma but
may change with time, whereas the classification by disease severity suggests a static
feature” pg. 928 [1].
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Despite decades of research in asthma, why has it been so difficult to formulate a
classification of asthma patients that can guide effective treatment? We believe this is
because majority of the research has either begun with an a priori grouping of patients
(using phenotype or molecular information), or has used analytical methods such as
hierarchical clustering that assume the existence of disjoint patient clusters [11–14]. For
example, Hastie et al., [11] grouped patients based on severity and analyzed how the
imposed groups were similar or different based on other phenotype variables. Similarly,
Woodruff et al., [12] grouped patients based on high or low expression of IL-13 inducible
genes, and compared the imposed groups based on other genes, and lung functions.

To avoid biases based on a priori patient groupings, some researchers have taken a more
data-driven approach to identify emergent clusters of patients. For example, Moore et al.
[13] used hierarchical clustering to identify five groups of patients based on phenotype
information, and then examined which variables were significant between the groups.
Similarly, Brasier et al. [14] used hierarchical clustering to identify four groups of patients
based on molecular information, but then used the existing severe versus non-severe
classification to identify emergent clusters for further analysis. While such data-driven
approaches address the limitations of a priori groupings of patients, unsupervised learning
methods such as hierarchical clustering and k-means assume the existence of disjoint
clusters in the data [15], and therefore could conceal other valid patterns (e.g., uniform
distributions or nested clusters) of how patients relate to each other.

Although the above studies have substantially increased our appreciation of the complex
multidimensional nature of asthma, to the best of our knowledge none have used data-driven
approaches without strong built-in assumptions to analyze how patients are similar or
different based on molecular information. Such an approach has the potential to inform the
identification of a more clinically useful classification of asthma patients.

3. Method
Our research began with the question: How do cytokines implicated in asthma, co-occur
across patients? To address our research question, we made critical decisions regarding data
selection, data representation and data analysis as discussed below.

3.1 Data Selection
Our study was based on a secondary analysis of cytokine profiles collected in a consortium-
wide study [14]. Levels for 25 cytokine were measured from bronchoalveolar lavage (BAL)
samples of the lower respiratory tract obtained from 40 severe, and 43 non-severe asthma
patients. The classification of patients was made according to the consensus definition of the
American Thoracic Society [4], and the two groups were balanced by age and gender. As
shown in Table 1, the dataset included 6 pulmonary function measures determined to be
independent by the domain experts. Because 50% of values in 7 cytokines (IL-1b, IL-7,
IL-10, IL-12, IL-13, IFN-γ, and GM-CSF) had undetectably low values, they were removed
from the dataset, resulting in a total of 18 cytokines (see our earlier publication [14] for
details about the data collection and inclusion criteria).

3.2 Data Analysis
Our analysis consisted of two steps: (1) exploratory visual analysis though the use of
networks to identify emergent visual patterns of cytokine co-occurrence; and (2)
quantitative analysis through the use of methods whose assumptions matched the visual
patterns in order to verify them. This two-step method was motivated by our earlier studies
[15, 16, 17] using a similar approach which have revealed that co-occurrence relationships
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can exhibit in different patterns (e.g., nested clusters, disjoint clusters), each prompting the
use of quantitative methods that make the appropriate assumptions about the underlying
data.

3.2.1 Exploratory Visual Analysis—Networks are increasingly being used to analyze a
wide range of molecular phenomena such as gene regulation [19], disease-gene associations
[20], and disease-protein associations [21]. A network (also referred to as a graph in
mathematics) consists of a set of points or nodes, joined in pairs by lines or edges; nodes
represent one or more types of entities (e.g., patients or cytokines). Edges between the nodes
represent a specific relationship between the entities (e.g., a patient has a particular cytokine
expression value). Figure 1 shows a bipartite network (where edges exist only between
different types of entities) [22] of patients and cytokines, which was created using Pajek
[23] (version 1.23).

Node diameter was used to represent the sum of the edge weights connected to it. This
enabled a rapid visual inspection to determine for example, which patients have overall high
aggregate cytokine values, and how such patients relate to the rest of the network. In
addition, using a second network of the same data (see Supplementary Figure A), the node
color was used to represent asthma severity (red for severe, and blue for non-severe), which
enabled us to analyze how the patterns in the overall network related to the existing
classification of asthma.

Edge weights in the network were used to represent the strength of the cytokine values for
each patient-cytokine pair. Because the 18 cytokines had different and unknown theoretical
ranges, we used the min-max normalization method using the following formula:

where vij is the raw expression value for cytokine i of patient j, v'ij is the corresponding
normalized value, and mini and maxi represent the minimum and maximum raw expression
values of cytokine i across all patients. This formula performs a linear transformation on the
raw data values by converting them to range from 0–1, and therefore preserving the relative
distances between the values. The min-max normalization method enables a consistent
method to compare the different cytokines values, and is especially useful when outliers are
meaningful such as what tends to occur in asthma cytokine expression due to biological
diversity [24]. As shown in Figure 1, the edge thicknesses were drawn to be proportional to
these normalized cytokine values.

Global patterns in the network were visualized and analyzed using the Kamada-Kawai
layout algorithm [25]. The algorithm results in nodes that are connected by high edge
weights to be pulled together, and those with low edge weights to be pushed apart. This
algorithm is fast but approximate1 and well-suited for small to medium-sized networks
consisting of between 50–1000 nodes [26]. As shown, the result is that nodes with a similar
pattern of connections (e.g., Eotaxin and IL-4 in the lower right hand side of Figure 1) are
placed close to each other.

Network analyses provide two advantages for analyzing complex relationships. (1) They do
not require a priori assumptions about the relationship of nodes within the data, such as the

1The Kamada-Kawai layout algorithm is approximate because it does not guarantee a globally optimal layout. The method is
therefore used to explore the data using different starting conditions, and the observed topology verified using appropriate quantitative
methods.
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hierarchical assumption of hierarchical clustering, or disjoint clusters of k-means. Instead,
by using a simple pair-wise representation of nodes and edges, network layouts enable the
identification of multiple structures (e.g., hierarchical, disjoint, overlapping, nested) in a
single representation [26]. Therefore, while layout algorithms such as Kamada-Kawai
depend on the force-directed assumption and its implementation, such algorithms are viewed
as less biased for data exploration because they do not impose a particular cluster structure
on the data, often leading to the identification of more complex structures in the data [15].
(2) Networks enable the simultaneous visualization of multiple raw values (e.g., patient-
cytokine associations, cytokine values, patient attributes), aggregated values (e.g., sum of
cytokine values), and emergent global patterns (e.g., clusters) in a uniform visual
representation. The overall network representation therefore enables the rapid generation of
hypotheses based on complex multivariate relationships, and enables a more informed
approach for selecting quantitative methods to verify the patterns in the data.

3.2.2 Quantitative Analysis—The insights derived from the network visualizations were
quantitatively analyzed using three methods. (1) Because the network layout suggested the
presence of distinct clusters for patients and for cytokines, we used the agglomerative
hierarchical clustering method to verify the number of clusters, and to identify the
boundaries of the clusters. In addition, we used a heat map to inspect the profiles of specific
patients and cytokines. The clustering was done using the Manhattan dissimilarity measure
(to handle the weighted edges) with the Ward linkage function [18]. Cluster boundaries were
determined based on natural breaks in the patient and cytokine dendrograms. To test
whether there were significant breaks in the dendrogram (denoting the existence of disjoint
clusters), we compared the variance, skewness, and kurtosis of the dissimilarities in the
asthma network, to 1000 permutations of the asthma network. For each network permutation
we preserved the number of nodes, and the number of edges connected to each node, in
addition to the edge weight distribution of patients when analyzing the cytokine
dendrogram, and vice versa. Significant breaks in the asthma patient or cytokine
dendrograms would result in a significantly larger variance, skewness, and kurtosis of the
dissimilarity measures, compared to the same measures generated from the random
networks.

(2) To analyze the relationship between asthma severity and the patient clusters, we used the
chi-square test of independence. To analyze the overall significance of 6 independent
pulmonary functions, we used the one-way, two-tailed Kruskal-Wallis test (non-parametric
ANOVA) to address the skewed values, and the false discovery rate (FDR) procedure to
correct for multiple comparisons. (3) To analyze the significance between each pair of
clusters for the above patient variables, we used the Dunn’s test procedure.

4. Results
The bipartite network visualization and quantitative analysis revealed distinct patient
clusters, and cytokine clusters. For each set of clusters we describe the results of the visual
analysis, the cluster analysis, and their significance to clinical attributes and molecular
processes.

4.1 Patient Clusters
Exploratory Visual Analysis—As shown in Figure 1, the visual analysis helped to
identify three clusters of patients based on their cytokine profiles: (a) Patient-Cluster-1
(shown in the lower right hand corner of Figure 1) had medium to high levels of the Eotaxin
and IL-4. However, they had relatively lower values for the rest of the cytokines as shown
by their relatively small diameters. (b) Patient-Cluster-2 (shown in the center of the
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network) had high values of Eotaxin and IL-4, but also high values for another set of six
cytokines (IL-5, IFN-γ, MIP1a, MIG, IL-17, MIP-1b) shown in the center of the network.
The higher cytokine values result in relatively larger node diameters compared to Cluster-1.
(c) Patient-Cluster-3 has overall lower values of many cytokines resulting in them being
scattered along the top periphery of the network. The overall lower levels of most cytokines
result in relatively smaller node diameters.

Quantitative Analysis—Because the network suggested the existence of distinct patient
clusters, we used agglomerative hierarchical clustering to identify the number and
boundaries of those clusters. As shown by the patient dendrogram on the vertical axis of
Figure 2, the agglomerative hierarchical clustering identified the boundaries of the visual
clusters in the network. Furthermore, while Patient-Cluster-1 and Patient-Cluster-2 were
intuitively clear from the network, Patient-Cluster-3 was identified as a distinct cluster in the
dendrogram because its members have a pattern of similarly low cytokine levels. The
clusteredness of the patients in the asthma network was significant as measured by the
variance of the dissimilarities (Asthma = 64.95, Random Mean = 20.08, p<.001 two-tailed
test), skewness of the distribution of dissimilarities (Asthma = 4.9, Random Mean = 2.81,
p<.001 two-tailed test), and kurtosis of the distribution of dissimilarities (Asthma = 30.24,
Random Mean = 14.78, p<.001 two-tailed test).

Relationship to Clinical Variables—To infer the meaning of the three patient clusters,
we analyzed the relationship between each identified cluster to asthma severity, and to
pulmonary function.

Asthma Severity: As discussed in the introduction, patients are currently classified as
severe or non-severe. Supplementary Figure A shows the same network in Figure 1, but
where the patient nodes have been colored based on severity (red for severe, and blue for
non-severe). An inspection of the network showed no visual pattern; there appeared to be an
even number of both types of severity in each cluster. The chi-square analysis verified this
visual result, which showed no significant association in asthma severity between the three
patient clusters (χ2(2,N=83)=0.9298, p=0.628). This suggests that a classification of patients
based on cytokine profiles does not match the current classification of asthma based on
severity.

Pulmonary Function: As shown in Table 1, the Kruskal-Wallis test revealed that 4 out of 6
pulmonary function2 measures were significantly different across the clusters3. The pair-
wise inter-cluster analysis revealed that Patient-Cluster-3 had three lung functions (Max
FEV1pp/MPVLung, Baseline FEV1pp, and PC20 Methacholine) that were significantly
higher than Patient-Cluster-1, and one lung function (Max FVCpp/MPVLung) that was
significantly higher than Patient-Cluster-2. In contrast, Patient-Cluster-1 had only one
lung function (Max FVCpp/MPVLung) that was significantly higher than Patient-
Cluster-2. Patient-Cluster-3 therefore had less baseline airway obstruction (both FEV1
values were significantly higher), less hyper-reactive to methacoline challenge (significantly
higher PC20 Methacholine), and preserved pulmonary capacity (significantly higher FVC
values) compared to the other two patient clusters.

2FVC and FEV1 are commonly used pulmonary function tests in asthma. Here we used an additional test called maximum
postbronchodilatory volume (MPV) to aid us in further characterizing the degree of airflow obstruction.
3In contrast, only two (Baseline FEV1pp and MaxFEV1pp/MPVLung) of the six measures were significantly different across the
severe and non - severe patients).
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4.2 Cytokine Clusters
Exploratory Visual Analysis—The bipartite network visualization also revealed three
cytokines clusters, which have a complex relationship to the patient clusters. (a) Cytokine-
Cluster-1 (in the lower right hand side of the network) consisting of Eotaxin and IL-4
contain cytokines that are pushed together because many patients from Patient-Cluster-1 and
-2 have high values of those two cytokines. Their resulting larger diameters suggest that they
are over-represented in patients compared to the other cytokines. This observation is also
salient by the many red cells (representing high values) in the last two columns (representing
Eotaxin and IL-4) of the heat map in Figure 2. (b) Cytokine-Cluster-2 consisting of six
cytokines (mentioned earlier) which are pushed together because they have high values of
mainly Patient-Cluster-2. Unlike Cytokine-Cluster-1, they have high values for only one
patient cluster, and therefore have smaller diameters. (c) Cytokine-Cluster-3 consisting of
the remaining cytokines scattered on the left and right hand side of the network have overall
lower values across all patients, and therefore have the smallest diameters in the network.

Quantitative Analysis—Similar to the patient clusters, the network suggested the
existence of distinct patient clusters. We therefore used agglomerative hierarchical
clustering to identify the number and boundaries of the clusters. As shown by the cytokine
dendrogram on the horizontal axis of Figure 2, the agglomerative hierarchical clustering
identified the boundaries of the visual clusters in the network. While Cytokine-Cluster-1 and
Cytokine-Cluster-2 are intuitively clear from the network, Cytokine-Cluster-3 is identified
as a distinct cluster in the dendrogram because it has a pattern of similarly weak levels with
patients. This observation is salient by the large number of green cells (representing low
values) for this cluster in the heat map in Figure 2. The clusteredness of the cytokines in the
asthma network was significant as measured by the variance of the dissimilarities (Asthma =
837.62, Random Mean = 46.69, p<.001 two-tailed test), skewness of the distribution of
dissimilarities (Asthma = 2.18, Random Mean = 0.49, p<.001 two-tailed test), and kurtosis
of the distribution of dissimilarities (Asthma = 7.25, Random Mean = 2.49, p<.001 two-
tailed test).

4.3 Discussion
The results suggest that cytokine values can indeed separate patients into distinct clusters.
While this result was sufficient on its own for insights to cluster asthma patients, the
bipartite network analysis also helped to identify cytokine clusters and their relationship to
the patient clusters, which enabled us to infer biological meaning about the patient clusters.

The frequent co-occurrence of Eotaxin and IL-4 (Cytokine-Cluster-1) is congruent with a
known sequence of molecular changes in asthma patients who often have a T-helper-2 (TH2)
lymphocyte-skewed immune response. This response results in the secretion of IL-4, which
in turn induces Eotaxin production by bronchial epithelial cells [27]. The resulting
downstream actions include the activation and recruitment of tissue-resident eosinophils, a
hallmark of early stage asthma. The presence of Eotaxin and IL-4 in lung fluids therefore
appears to represent important sub-stages of a complex molecular pathway in asthma, which
explains their frequent co-occurrence in the network.

To understand the biological significance for cytokines in Cytokine-Cluster-2 (IL-5, IFN-γ,
MIP1a, MIG, IL-17, and MIP-1b), we entered its members into the Ingenuity Pathway
Analysis (IPA) application. The results from IPA suggest that the frequent co-occurrence of
these cytokines is regulated by the innate inflammatory nuclear factor-κB pathway (NF-κB).
NF-κB is a potent pro-inflammatory transcription factor that activates expression of cytokine
networks. Furthermore, persistent NF-κB activation has been linked to uncontrolled/acute
exacerbations of asthma [28]. The frequent co-occurrence of this set of cytokines therefore
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implies the presence of a distinctly different pro-inflammatory state compared to the IL-4 –
Eotaxin process.

The above cytokine clusters, along with pulmonary functions of the patients, provide a
biological explanation for the patient clusters. The strong relationship of Patient-Cluster-1 to
Cytokine-Cluster-1 suggests that patients in this cluster have disease primarily driven by
TH2 inflammation. In contrast, Patient-Cluster-2 has a strong relationship to both Cytokine-
Clusters-1 and -2. This result implies that patients in Patient-Cluster-2 have a component of
activated innate inflammatory pathways. Further evidence for this inference of state-based
clusters is provided by differences in pulmonary function across the clusters: Patient-
Cluster-3 which has the lowest cytokine values for both of the above cytokine clusters, also
has the largest number of significant differences in obstructive airway disease parameters in
pulmonary function testing, and lowest airway reactivity response to methacholine
compared to Patient-Clusters-1 and -2. This implies that Patient-Cluster-3 represents a
subgroup of asthmatics with preserved pulmonary function and greatest response to
albuterol without active inflammation. The network analysis of patients and cytokines
therefore implies a state-based classification of asthma patients informed by underlying
molecular processes. The results also provide evidence for the growing consensus [1] that
asthma is a dynamic disease where the same patient could enter different asthmic states
based on environmental and other triggers. Future studies that include such information
could lead to a better understanding of the relationship between triggers and resulting
asthmic states, which could translate into more effective treatment and prevention
approaches that are personalized to each patient.

The limitation of our study is that we analyzed only one dataset, and our future research will
attempt to replicate the results in a similar dataset. However, the current results suggest that
asthma patients can be meaningfully classified using molecular markers such as cytokines.

4.4 Conclusions and Future Research
Cytokines control key processes in asthma including immune activation and T lymphocyte
skewing. However, little work has been done to investigate whether and how cytokines
could help to classify patients. By using bipartite network visualizations without a priori
assumptions of patient classes, combined with appropriate quantitative methods suggested
by the patterns in the network, we arrived at a new state-based understanding of asthma.

Our experience suggests that the bipartite network representation was effective because it
enabled: (1) the overlaying of multiple raw and aggregated variables in addition to the
cluster boundaries, onto the same visualization; (2) the selection of quantitative methods that
made the appropriate assumptions about the observed co-occurrence patterns in the data; and
(3) the detection of complex relationships between the patient clusters and the cytokine
clusters, which were difficult to detect by analyzing just the heat map in Figure 2. These
combined features of the bipartite network representation enabled the asthma experts on the
team to derive an intuitive understanding of the complex multivariate relationships between
molecular and phenotype information, which rapidly led to the proposed state-based
classification. The overall approach of using complementary visual and quantitative methods
to comprehend complex molecular and phenotype relationships therefore provides an
approach that could generalize to other datasets with similar translational goals.

It is important to reiterate that the bipartite network could have revealed co-occurrence
patterns without the presence of distinct clusters, prompting us to use other methods to
quantify the patterns as we have done in a recent study on cancer patients [15]. Therefore,
we believe that bipartite networks provided an important first step to identify the nature of
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co-occurrence in molecular data, which then guided the use of appropriate quantitative
methods to verify those patterns.

In our future research, we plan to extend our understanding of the current results in three
ways:

1. Analyze the significance of the emergent clusters of patients and cytokines by
comparison of the bipartite network directly to random networks. This is a non-
trivial task as modularity algorithms for bipartite networks [29] (designed to
identify and measure the significance of graph partitions or clusters in bipartite
networks) currently do not handle edge weights [personal communication Roger
Guimerà, Mark Newman].

2. Explore other complementary visual analytical methods to identify other complex
relationships in the data. For example our recent use of three dimensional (3D)
immersive visualizations of a renal dataset enabled the identification of a complex
relationship of domain importance that was missed in the analysis of a 2D network
analysis of the same data [30]. Furthermore, although networks allow multiple
variables to be represented using graphical attributes such as color, shape, and size,
there are limits on the number of variables that can be simultaneously represented
or comprehended, often resulting in the need for multiple networks. We are
therefore exploring the use of Circos Ideograms [31, 32] which are explicitly
designed to enable a large set of variables to be simultaneously visualized, with the
goal of exploring their relationship to the clusters identified through the network
analysis, and to each other.

3. Use the patient clusters and their relationship patient variables to inform the
development of classifiers using supervised learning methods. The goal of
developing classifiers that are informed by the unsupervised learning methods used
in the current study is to enable the resulting classification not only to have
predictive power for response to therapy, but also to be meaningful from a domain
perspective.

The results of the above multi-method approach, progressing from discovery through visual
analytics, verification and validation through quantitative analysis, and prediction through
classifiers, could lead in the future to a molecular classification of asthma patients that is
based on underlying biological processes and has intuitive domain meaning. Such a
classification has a higher probability for successful translation to clinical diagnosis and
treatment of this complex disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A bipartite network (automatically laid by the Kamada-Kawai algorithm [21]) shows how
18 cytokines (colored nodes) co-occur across 83 patients (black nodes). The thickness of the
edges is proportional to the normalized cytokine expression values, and the size of the nodes
is proportional to the sum of the edge weights that connect to them. Therefore patients with
high total cytokine values have large nodes, and higher cytokine values are represented by
thicker edges. For clarity, colors represent cytokine clusters, transparent blue shapes
represent patient clusters, and patient IDs are not shown. See Supplementary Figure A,
which shows the same network shown here, but with the patient nodes colored by severity to
help examine the relationship of the current severe vs. non-severe classification, to the
patient clusters.
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Figure 2.
A heat map where the rows represent patients, the columns represent cytokines, and the
colors represent normalized cytokine values (green = 0, red = 1). The rows and columns are
ordered based on the results of the agglomerative hierarchical clustering, with dendrograms
for the patient and cytokines shown on the vertical and horizontal axes respectively.
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Table 1

Comparison of six independent pulmonary functions across the three patient clusters identified by the network
analysis.

Pulmonary Function p value with FDR correction

Max FVCpp/MPVLung 0.006*

Max FEV1pp/MPVLung 0.0375*

Baseline FEV1pp 0.0375*

Baseline FEV1/FVC 0.1944

Max FEV1 Reversal 0.583

PC20 Methacholine 0.0375*

Significant differences between the groups are indicated by asterisks based on a one-way, two-tailed Kruskal-Wallis test with an FDR correction.
(FVC=forced vital capacity, FEV1=forced expiratory volume in 1 second, PC20 methacholine=dose of methacholine that produces 20% fall in
FEV1, FEV1 albuterol reversal= percent change in FEV1 in response to albuterol inhalation, MPV = maximal postbronchodilator value, pp =
percent predicted).
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